MODIS
SCIENCE DATA SUPPORT TEAM
PRESENTATION

October 2, 1992

AGENDA

. Action ltems

. MODIS Airborne Simulator (MAS)
. MODIS Level-1 Software Design
. MODIS Level-2 Processing Shell

. MODIS Level-1 Earth Navigation

ACTION ITEMS:

06/12/92[Tom Goff, Carroll Hood] Develop separate detailed schedules using Microsof't
Project for Level-1A and -1B software design and development. (Updated results for
Level-1B are included in the handout.) STATUS: Open. Due Date: 07/10/92

07/31/92 [Tom Goff, Ed Masuoka, Al Fleig] Develop the purpose and requirements for
a packet simulator. Get more information on the packet simulator being developed by
SBRC. (An updated requirements specification was included in the handout on
09/04/92. A copy, with a cover letter, should be sent Jerry Hyde of SBRC for
coordination with their requirements.) STATUS: Open. Due Date: 09/04/92

MODIS Airborne Simulator (MAS) Status

Liam E. Gumley
Progress up to 1 October 1992

(1) Software/data developments

I worked with Si-Chee Tsay on getting him up to speed with NetCDF over the last few weeks.
One concern he expressed with the MAS Level-1B datasets was that an estimate of the
exoatmospheric solar spectral irradiance in each channel was not included. His comment was that
the visible/near-infrared channels were "useless" without this information. Most users will need
this information to do any quantitative analysis of the information in the visible/near-IR channels.
In the interim I supplied Si-Chee with a program I extracted from the LOWTRANT7 code that
returns the solar irradiance at a given wavelength. LOWTRAN?7 has a database of solar spectral
irradiance at the mean Earth-Sun distance from 1.74 microns to 500 microns at resolution of 10
or 20 wavenumbers. I propose to compute an Earth-orbit corrected solar spectral irradiance for
each MAS channel weighted by the spectral response of that channel i.e.

Swd) = [SQRM)dA

[R dA
where Sy/(A) = sensor weighted orbit corrected exoatmospheric solar spectral irradiance
S(A) = orbit corrected exoatmospheric solar spectral irradiance
R(A) = sensor spectral response

I already have all of the software components necessary to compute these numbers.

If this information is included in MAS Level-1B datasets, it may also be advisable to include
information which allows users to convert from radiance in the infrared channels to temperature.
This is a common step in quantitative analysis of infrared radiance data. Temperature to radiance
conversion tables are already computed as part of the calibration processing, and it would be a
simple matter to include these as part of the Level-1B datasets. These tables contain the sensor
weighted Planck radiances at 1K intervals from 150K to 373K for each infrared channel. If these
were included in the Level-1B files then users could perform interpolation to go from a given
radiance value to the corresponding temperature value. This information would add about 10000
bytes to the size of each Level-1B output file (usually tens to hundreds of megabytes in total size).

(2) Noise computations

I received a set of noise computation results from Chris Moeller at Wisconsin that I compared to
my own estimates. These are presented overleaf.

MODIS SDST Report 10/01/92
Liam E. Gumley

Channel Wavelength SNR(1) SNR(2) Temp(l) Temp(2)

(microns) (Kelvin) (Kelvin)
7 3.725 25.0 24.0 290.55 290.15
8 13.952 7.5 7.5 248.60 248.42
9 B8.563 110.3 118.4 287.85 288.02
10 11.002 109.6 109.5 289.90 289.94
11 13.186 16.0 16.1 272.53 272.69
12 12.032 67.1 68.1 289.02 2858.01

Derived from a 50x50 block of pixels starting at scanline 52393, pixel 200 on 23 June 1992. This
data is over clear ocean. Values listed in columns marked (1) are from GSFC MAS data, while
columns marked (2) are from Wisconsin MAS data. SNR is signal to noise ratio defined as mean
radiance for 50x50 pixel box divided by standard deviation. It should be noted that different
spectral response and Planck function information is used at Wisconsin, which accounts for the
slight difference in temperature values.

(3) MODIS Level-2 Shell Prototype

Further design work was undertaken on the MODIS Level-2 Shell Prototype. Copies of the
design documents produced so far are included overleaf for comment.

MODIS SDST Report 10/01/92
Liam E. Gumley

MODIS Level-2 Shell Prototype Concept

Liam E. Gumley and J.J. Pan
MODIS Science Data Support Team
25 September 1992

Objective

The MODIS Level-2 Shell Prototype (MLSP) will explore the concepts and techniques to be used
in the MODIS Level-2 Shell through the use of data from the MODIS Airborne Simulator (MAS)
and representative science algorithms. The emphasis will be on the mechanics of the shell itself
ie.

control mechanisms
data flows

algorithm interactions
input/output redundancy
process scheduling
process efficiency

The prototype is intended to be a simulation testbed for these concepts only, and not a simulation
of MODIS science.

Description
The first version of the MLSP will contain the following components:

Level-1B input data sets from the MAS

Ancillary input data sets (TBD)

Land/sea discrimination algorithm

Cloud/snow discrimination algorithm

Normalized difference vegetation index (NDVI) algorithm
Sea surface temperature (SST) algorithm

Aerosol optical depth (AOD) algorithm

Level-2 output data sets (archive, metadata, browse)

Future versions of the MLSP will contain more sophisticated science algorithms such as:

o Biome - Biogeochemical model (BGC) algorithm
» Cloud Optical Depth (COD) algorithm
e Cloud Top Temperature/Height (CTT) algorithm

The MLSP will integrate the science algorithms into a hierarchical structure which allows data
and control flows between the algorithms in an orderly manner. The shell will be responsible for
retrieving the data required by the algorithms from the input Level-1B and ancillary data sets, and

MODIS SDST Report 10/01/92
Liam E. Gumley

for creating Level-2 data products in archive form. Metadata and browse products are then
created from these archive products.

Details

The MLSP will be implemented on a Unix system in ANSI-C. The science algorithms will be
implemented in either FORTRAN-77 or ANSI-C. The CFORTRAN system will be used to
interface C and FORTRAN science algorithms with the controlling shell. The key function of
CFORTRAN is the ability to pass parameters of various types between C and FORTRAN. The
NetCDF software library will be used for data formatting. No other software tools are required at
present.

The input data used by the MLSP will be MAS Level-1B flight lines. These contain calibrated,
geolocated MAS radiances and ancillary information and are stored in netCDF format.

Ancillary datasets will be used as required, and will include at least the following items:
o Land/sea topography data base

o Total ozone climatology data base

« Exoatmospheric solar spectral irradiance data base

The science algorithms will be constructed as either subroutines or functions which exchange
input and output data as well as control information with the shell. The algorithms will be
designed to contain computations only. They will not contain any file input/output calls, apart
from those necessary internally to access ancillary data files. The flow of input and output data
will be controlled by the shell.

Algorithms

Land/sea discrimination

This will utilize a database of land/sea topography to determine which pixels are over land or sea.
Ancillary data required is a topography database of comparable spatial resolution to the MAS
data.

Cloud/snow discrimination

This will utilize a visible reflectance threshold test, and a visible/near-infrared channel ratio test to
determine the existence of cloud or snow. Ancillary data required is a database of
exoatmospheric solar irradiance at MAS wavelengths to determine reflectances.

Normalized difference vegetation index (NDVI)

This will use the well known visible/near-infrared reflectance difference ratio to estimate the
NDVI. Ancillary data required is a database of exoatmospheric solar irradiance at MAS
wavelengths to determine reflectances. Cloud/snow and land/sea masking are required.

MODIS SDST Report 10/01/92
Liam E. Gumley

Sea surface temperature (S57)

This will utilize a split window algorithm where two infrared channels are used to estimate the
skin temperature. Cloud/snow and land/sea masking are required.

Aerosol optical depth (AOD)

This will utilize a single scattering atmospheric correction to estimate AOD over dark ocean
surfaces. Ancillary data required is a database of exoatmospheric solar irradiance at MAS
wavelengths to determine reflectances, and a total ozone climatology.

Output products

The MLSP will generate output products of the same type expected by MODIS, including:

e Level-2 archive data
o Metadata
o Browse data

The Level-2 archive data will be stored in NetCDF format. An appropriate structure for the
Level-2 output files will be designed and implemented. Utility programs will be developed to
image these data files.

Metadata will be extracted from the Level-2 archive data routinely. A list of desired metadata
items will be produced, and a utility to extract these items from the archive data will be
developed.

Browse data will be generated from the Level-2 archive data routinely. This will consist of
imagery at spatially subsampled resolution in a standard image format (e.g. HDF or GIF).

Detailed Algorithm Descriptions

(1) Land/sea discrimination

A database of world topography is used to establish whether a given latitude/longitude is land or
sea. Currently a 10 nautical mile resolution database is available, however a database with
resolution closer to that of a MAS pixel is being investigated.

(2) Cloud/snow discrimination
Visible and near-infrared reflectances are used to determine whether a given pixel contains cloud

or snow. Bright pixels are identified using a reflectance threshold test at around 0.66 microns.
Separation of these bright pixels into cloud and snow is done using a reflectance threshold test at

MODIS SDST Report 10/01/92
Liam E. Gumley

around 1.60 microns, where clouds are bright and snow is dark. An additional test may be
necessary to check for sunglint regions over water.

(3) Normalized difference vegetation index (NDVI)
This index is calculated by a difference ratio of the form

(near infrared radiance) - (visible radiance)
(near infrared radiance) + (visible radiance)

where the near infrared radiance is at around 0.8-0.9 microns, and the visible radiance is at around
0.67 - 0.7 microns. It may be necessary to convert these radiances to reflectances if longer
wavelength infrared (e.g. 1.6 micron) channels are used. This algorithm is only used over land
when no cloud or snow is present.

(4) Sea surface temperature (SST)

Two longwave infrared channels are used to compute a SST estimate using the split window
algorithm of the form

SST=Ty1+a(Ty1-Ti2)+b
a=1.4846
b = 0.0 (bias correction)

where Ty] and Tjp are the 11 micron and 12 micron equivalent black body temperatures in
Kelvin. This algorithm was developed at the University of Wisconsin-Madison for the MAMS
instrument. This algorithm is only used over water when no cloud is present.

(5) Aerosol optical depth (AOD)

This algorithm uses a single visible channel to estimate the aerosol optical depth over the ocean.
It assumes that the ocean surface is essentially dark at wavelengths greater than 0.67 microns.
Thus in the absence of sunglint, the radiance received by a high altitude sensor above most of the
scattering constituents of the atmosphere may be approximated as

Li=L;+L,

L = total sensed radiance

L, = Rayleigh single scattered radiance
L, = Aerosol single scattered radiance

If the Rayleigh scattering component L; is estimated with reasonable accuracy then the problem
may be rewritten as

La=Lt-Lr

MODIS SDST Report 10/01/92
Liam E. Gumley

and it is then necessary to find the aerosol optical depth which gives rise to the aerosol single
scattered radiance L;. This algorithm is only used over dark water in the absence of clouds.

MODIS SDST Report 10/01/92
Liam E. Gumley

MODIS Level-1 Software Design Status
Thomas E. Goff
1 October, 1992

teg@cheshire.gsfc.nasa.gov,
(301) 982-3704
tgoff on GSFC mail

-- Miscellaneous Status--

. Replace program enhancements - A wild card facility was added to the replace program to
allow the conversion of UNIX man and more page output to be captured by my PC and printed
with character enhancements (bold, italics) on the HP LaserJet. This was required in order to
obtain copies of the documentation for the UNIX machines that we use daily.

e Further Porting of the MODIS sample C programs. - Both the fdump and replace programs
in their final form using ANSI C prototyping guidelines, previously on the SGI, Sun, and PC
platforms, have been transferred to the HP730 (handle: modisl). These programs are written in
ANSI C and will not compile with the native compilers on the VAX, Sun, or HP machines.
Both the Sun and HP computers have the gnu C compiler installed, thereby allowing these
programs to be compiled and executed on the Sun and HP. HP's optional C compiler has an
ANSI standard mode. The ANSI header files across platforms contain discrepancies that will
cause warnings and possible errors when porting code across platforms. These header files will
need to be sanitized in the EOS era in order for the posts to be completely successful. ANSI
compatibility is still a young technique.

o HP 9000/730 Capabilities. - I have generated a memo outlining my requested enhancements
to the modisl computer. I have also set up my account on both the HP and Sun machines with
command completion, history, and editing capabulities.

e Microsoft Project - This project support tool is continuing to be utilized in the planning of the
MODIS Level-A and Level-1B designs. Level-2 design efforts will be added to the suite of
existing project files (workspace). Consideration should be given to subscribing to the
independent Project Views newsletters for MS Praject 3.0 users.

- Futures -

° SLIP and/or ppp is forever being investigated. I have additional names and resources which I
am trying to reach.

. Additional software will be loaded onto the modisl computer to provide debugging, enhanced
make, code checking, text processing, postscript conversions, screen dumps, etc. as time allows.

MODIS Science Data Support Team c:\modis\status.doc

MODIS Data Product Generator Design
MODIS Level-1B - Delay Gantt, 1 Oct '92

1992 1993 1994 1995 1996 ‘

ID _|Name i[i[als[o[N[D[J[FIM[AIM[I[J[a[sJo[ND [[FIM[A[M]3[F]A]s[O[N]|D T[FM[aAM[J[JJA[sTo[N[D[I [FIM[A[M]3TT[A]S]O
1 publish alpha version structure charts | TEG

2 preliminary requirements ()m;nU .

3 verify DADS interrogation messages 4 8 TEG .

4 determine data product contents v a7 EG

5 determine metadata contents ‘ 3 TEG

6 determine cube and granule header contents [' TEG

7 | perform CASE design - (}unm:l:lf

8 develop B version structure charts o= IE%TEG,TLCF,C ASE "

9 examine initiation messages 1 g ETEG,TLCF,CASE .

10 generate termination messages o 1 3‘ TEG,TLCF,C ASE

11 handle dynamic status messages l2 g ftg,pryé ASE e

12 create processing log entries ‘ 9 E'TEGV,'-I:LCVF,C ASE

13 generate data flow exception messages h 14' f fEG,TI;Cf,C ASE

14 setup processing items Y TEGTDCFCASE

T PP —————r— i ot IR

16 |MODIS code creation T A T i s)

17 source code generation 10 ;fE(‘;,H,TLCF,Hs[,

18 source code compiling 17 ' TEG,TLCF,Hsb ‘ .

19 create/update make files ’ ' 10s TEG,TLCF,Hsb

20 perform source code QA — 1824 TEG,EOS

21 source code walkthroughs v — =—=20=7ZZ24 TEG

22 | External Interface Document ‘ 188 TEG,DTP
23 | § MODIS execution on TLCF i I T st

24| code debugging | 20 @TEGTLCEHS |

— SR | e - ,,..l 17% TEG,TLCF’HSb,EOS
26 execution testing 24 . ;I;iZG,TLCF,Hsl:)

Project: MODIS Level-1B
Date: 1/10/92

Critical

Progress

Noncritical BEZZZZZ7Zz22222272222

Milestone ¢

Summary j@rusinnnuannin L)

RolledUp ¢

Delay
Slack

-2
~

Pape 1

MODIS Data Product Generator Design
MODIS Level-1B - Delay Gantt, 1 Oct '92

1992 1993 1994 1995 1996
ID | Name [[A[s[oN[p{I[FIM[AIM[TTIJA]s[oIN]D [T [FIM[AM] s [J [A[sJoIN]D [T [FM[AM[J]3TA[s]o]N[D| s [FIM[A[M]I]I]A]S[O
27 performance profiling 2672 TEG,Hsb
78 | write data product validator T —— T T
29 generate data product structure specifications ‘ 4= TEG,D;I'i’. .
30 code generation and compiling ‘ 2§ TEG,I’LCF,Hsb -
31 debugging o -=3o=m TEG,TLCF,ﬁsb
= e L e '=31=%TEG’FLCF
33 data product validation ‘ t-—-—-—26,52ﬂ TEG,TLCF
34 performance on TLCF EEETIE% TEG,TLCF,Hsb
35 | Software Design Description Document i L - 24=3 TEG,DTP
36 Software Validation and Verification Document 17=m TﬁG,DTP »
37 |Software Installation Guide | i | 7 64 TEGDTP |
38 | Software Operations/User's Guide . r‘—“‘37=ﬂ TEG,DTP
39 |configuration management activities - ” em————19=] TEG,TLC
4 |vesionlonPGS | & L0 -
a port code 10 PGS 380 TEGEOS
42 execution testing o 41 L TEG,EOS
3 data product validation " 42|13 TEGTLCF
4 revise all documentation | =so=@tEepTr
e e et e o e e
- e ———e 4488% T EGEOS R R
- "=, o 46 , TEG,EOS S
a8 data product validation e————472 TEGTLCF
49 revise all documentation - u;_—_4g:% TEG;bTi’
I B L : i .
51
52

Project: MODIS Level-1B
Date: 1/10/92

Critical

Progress

Noncritical BZZ22222772222227772

Milestone €
Summary ~CRIVITIINIITIUIIIT)
RolledUp ©

Delay
Slack

b
~-

Page 2

DRAFT

MODIS Level-2 Processing Shell Design and Development
J.J. Pan
Research and Data Systems Corp.
(301) 982-3700

Date: September 21 - October 2, 1992

1. C and FORTRAN Interface

Attached are three test programs dealing with the C/FORTRAN interface on the SGI
Iris system. The main program of each code is written in C and the subroutines are
written in FORTRAN.

In the first C/FORTRAN Interface Demo, which does not include the CFORTRAN
tool, examples] to S emphasize the general rules of the interface: character string -
handling, accessing common blocks of data, array handling, and complex data handling.
The second program, which is modified from a FORTRAN demo program developed by
Liam Gumley, gives an example of reading a MAS NetCDF file, and the third program is
similar to the second program, except using the CFORTRAN tool to handle the interface.

Here are some advantages and disadvantages of using or not using the CFORTRAN tool:

C/FORTRAN Interface Directly Using CFORTRAN Tool
Advantages 1. Might get help from the computer dealer. 1. It is not necessary to
2. Some documents might be available. modify FORTRAN
subroutines.

2. It is system independent.
(for most available systems)

Disadvantages 1. It is system dependent. 1. Requires expanding the no.
2. Might require modifying FORTRAN of parameters passed.
subroutines which pass char. string. 2. Reliability and maintenance

are to be determined.

2. Shell Prototype Design and Development

The objective of the Level-2 shell prototype has been described in the MODIS Level-2
Shell Prototype Concept (MLSP) report. The major goal in Phase I is to integrate the
algorithms. During Phase II we will concentrate on improving the operational capabilities.
Some functions of the shell are still under study. They include:

MODIS/OCT0192.DOC MODIS Level-2 Processing Shell
MODIS/SDST/J. J. Pan . October 1, 1992

12

DRAFT

1. Input/Qutput:
- How do we retrieve the MAS data and pass it to each algorithm sequentially?
- How do we keep the flexibility of shell if data processing is done in parallel?
- How do we store the data products if they are required later in the sequence?
2. Operational Control:
- How do we control the processing sequence of the shell?
- How do we handle exceptions such as running one particular algorithm?
- How do we manage the metadata and browse data generation?
3. Data Flows:
- How do we determine whether the required input data are available?
- How do we design a data "log" for tracking the status of data processing?
- How do we manage data files?

Some additional questions, such as the useage of the PGS tool kit, will be addressed in the
future.

MODIS/OCT0192.DOC MODIS Level-2 Processing Shell
MODIS/SDST/J. J. Pan - October 1, 1992

’

rL

VBNV WN

C/FORTRAN Interface Demo.

Programmer: J. J. Pan
Date: 9/25/92

Purpose:

This demo program provides several simple examples of the
interface between C programs and FORTRAN subroutines.

These examples have geen tested on a Silicon Graphics's IRIS
system. Some modifications may be required for different
computer systems.

The interface rules described here are based on the
FORTRAN Language Programmer's Guide, Version 2.0,
Charpter 3. FORTRAN Program Interfaces.

Example 1. (General Rules)
1. When calling a FORTRAN subprogram from C, the C program must
a?pend an underscore (_) to the name of the FORTRAN subprogram.
2. ALl EXPLICIT arguments must be passed by reference and all
routines must specify an address rather than a value.

#include <stdio.h>
?ain()

short data[)=(11, 12, 13);

printf("%d %d %d\n", data[0), datal1]l, data(2]);
for1_(&data(01);

printf("%d Xd %d\n", datal0], data{1]l, data{2});
)

subroutine fori{data)
integer*2 data(3)

data(1)=1
data(2)=2
data(3)=3

return
end

Example 2. (Character String Handling)

1. One must specify the data address and its length for
passing a character variable. However, if the length is one,
no extra argument is needed and the single character result
is returned as in a normal numeric function.

#include <stdio.h>
main()

char message[)="1234567890";
short leng=10;

short data(]l=(1,2,3);

char singchar(l="1%;

- h e d ek mad
b o b ek b

printf("%¥s\n", message);

for2_(data, message, &leng, &singchar);
printf("%s\n", message);
printf("¥s\n",singchar);

printf("Zd %d %d \n",data(0),data(1],datal2]);
)

subroutine for2(data,string,leng, onechar)
integer*2 data(3), leng

character onechar

character string(leng)

print *, 'single =', onechar
print *, 'string =',string(1:leng)
print *, ‘data =',data(1),data(2),data(3)

return
end

Example 3. (Accessing Common Blocks of Data)
1. The "struct® is used to access common blocks of data.
Data types in FORTRAN and C programs must match.

2. Unnamed commom blocks are given the specified name _BLNK_.

#include <stdio.h>
struct S (
short i;
float j;
) x_;
struct {
short k;
short ;
)} _BLNK_ ; /* double underscores after BLNK */
main()

for3a ();
print¥("i&d, Xf\n", x_.i, x_.j);

for3b ();
printF("kd %d\n", BLNK_ .k, _BLNK_.l1);
)

subroutine for3a()
integer*?2 i

real*4 r

common /r/ i, r

i=10
r=20.0
return
end

subroutine for3b()
integer*2 i,j
common i,]

i=1
i=2

CFORTRAN.DEM 10-1-92 4:19p

Page 1 of 2

ANIueY LI

il

return
end

le 4. (Array Handling)

1. FORTRAN stores arrazs in Colum-major order with the leftmost
subscript varying the fastest. C, however, uses Row-major order
with the rightmost subscript varying the fastest.

#include <stdio.h>
main()

{

short i,j,k;

short n=0;

short pl= 1 p2=1,
short array(41(3][],

for (k=0; k<4; k++)
for (j=0; j<3, j++)
for (i=0; 1<2; i++)
4 array[k](}][l)—nH
printf(" Xd %d Xd kd\n" i,j.k,array[kl (j1[il);

for4_(array, &pl, &p2, &p3);

for (k=0; k<4; k++)
for (1‘0; j<3 j*e)
for (i=0; |<2- i++)
prlntf(“ %' %d %d %d\n", i,j,k,array{k) [j)(i));

subroutine fork(array, pi1, p2, p3)
integer*2 p1,p2, g
integer*2 array(,3,4)

do 10 k=1,4

do 10 j=1,3

do 10 i=1,2

print *, 1-1,j-1,k-1,array(i,j, k)
10 continue

array(pt+1,p2+1,p3+1)=0

return
end

Example 5. (Complex Data Handling)
1. The "struct" is used to pass complex values.

#include <stdio.h>
struct (float real,imag;} x;
main)

{
for5_(&x);
grtntf(“%f %f \n", x.real, x.imag);

subroutine for5(x)
complex*8 x

X = cmglx§1.0, 2.0)

print

return
end

TOTo e T AT

CFORTRAN.DEM 10-1-92 4:19p

Page 2 of 2

/*****t**i*it*Ql*ttt**tt*****i********i**t*iﬁ***ﬁ**t****i************ 68 count[j]

1;

fnn

9l

69 countl2] = 1;
Interface of C and FORTRAN programs on IRIS 70 i i
7 /* get the hyperslab of data (one number in this case) */
Programgegé é. J. Pan ;% ncvarget(cdfid, dataid, start, count, (void *) value);
Date : 9/28/92
74 printf(" cdfid =Xd\n", cdfid);
This program is based on the demo FORTRAN program: 75 printf(" dataid=Xd\n", dataid);
SIMPLE.F, developed by Liam Gumley, which gives a quick hack 76 printf(® start =Xd, %d, Xd \n*,start(0],start(1],start(2]);
to demonstrate reading of a MAS netCDF file. 77 printf(" count =%d, Xd, Xd \n", count [0}, count {11 ,count (21);
78 printf(* value =Xd\n", value(0]);
tttti*titttt*lii**t**ii**i***t**iiittti*********iiii***t**i*ti**i*ti*/ 79
80 leng=29;
* include the netcdf.h definitions */ 81 /* calling a Fortran subroutine . */
' 82 codel_(&value[0], &scale(0], &start(0], string, &leng);
include <stdio.h> 83)
#include "netcdf.h" 84
85
86
main() 87 subroutine codel(value, scale, start, string, length)
C 88
89 integer*4 start(3)
/* set up necessary data types for netCDF (note that you should 90 integer*2 value, length
leave these as the default type for your compiler) */ 91 real*4 scale(12)
92 character*72 string
long cdfid, rcode, dataid; 93
static long start(3], count(3]; 94 print *, 'in codel== value= ', value
95 print *, ¢ == scale= ', scale(1),scale(2),scale(3)
/* set up types for variables and attributes */ gg print ¥, ! == start= !, start{1),start(2),start(3)
long vrtype, vrlen, ttype, tlen; 98 ¢ write the resulting radiance, after rescaling to_a real number
short i; 99 ¢ print *, 1 Radiance =', real(value)*scale(start(2))
short leng, valuel[1]; 100 print *, string(1:length)
float *scale; 101
char *string; 102 return
103 end

printf(" Enter tLine, Band, and Pixel :\n");

for (i=0; i<3; i++)
scanf("xd", éstart[i]);

printf("==Xd,%d, %d\n",start (0],start[1], ,start(2]);

" set netCOF error options */
ncopts = NC_VERBOSE | NC_FATAL;

/* open the netcdf file */
cdfid = ncopen("test.cdf", NC_NOWRITE);

Vid get the variable id for the desired variable */
dataid = ncvarid(cdfid, "CalibratedData");

/* get the scale factor values (from attribute scale_factor) */
ncatting (cdfid, dataid, "scale_factor", &vrtype, &vrlen);
necatting (cdfid‘ dataid, “wunits¥, &tt{pe, &tlen);
scale = (float *) mal loc(vrlen*nctypelen(vrtype));
string = (char *) malloc(tlen*nctypelen(ttype));
ncattget(cdfid, dataid, “scale_factor®, (void *)scale);
printf(" scale=ﬁf, xf, if\n“, scale(0], scale[l],scale[é]);

/* get the units text description (from attribute units) */
ncattget(cdfid, dataid, "units", (void *)string);

/* set the pixel, channel and record counters */

count {0} = 1;

88.C 10-1-92 43:21p

Page 1 of 1

L

It*************i*********t*tt***i*ti**it*****i******************i****

Demo of the CFORTRAN tool

Programmer: J. J. Pan
Date: 9/24/92

This program is based on the demo FORTRAN program:
SIMPLE.F, develo by Liam Gumley, which gives a quick hack
to demonstrate the reading of a MAS netCDF file.

The Main program is written in C and the subroutine is in Fortran.
CFORTRAN is used as the tool to interface C and FORTRAN programs.

ttt**i******tii*it*ﬁ*ii*iﬁ*tﬁiiii*tt****ii*ii**i**i****t****liit***ik/

/* include the netcdf.h and cfortran.h definitions */

#include <stdio.h>
#include "netcdf.h®
#include Ycfortran.h"

#define CODE1(A,B,C,D) CCALLSFSUB4(CODE1,codel, SHORT,FLOATV,LONGV, \
STRING, A, B, C, D

main()

/* set up necessary data ty?es for netCDF (note that you should
leave these as the default type for your compiler) */

long cdfid, rcode, dataid;

static long start[3], count(3]);

/* set up types for variables and attributes */

tong vrtype, vrlen, ttype, tlen;
short i;

short valuell];

float *scale;

char *string;

printf("* Enter Line, Band, and Pixel :\n");
for (i=0; i<3; i++)
scanf("%d", &start(il);

printf("==Xd, %d, %d\n", ,start (0} ,start[1],start(2]);

" set netCDF error options */
ncopts = NC_VERBOSE | NC_FATAL;

/* open the netcdf file */
cdfid = ncopen("test.cdf", NC_NOWRITE);

/* get the variable id for the desired variable */
dataid = ncvarid(cdfid, "CalibratedData");

/* get the scale factor values (from attribute scale_factor) */
ncatting (cdfid, dataid, "scale_factor", &vrtype, &vrlen);
ncatting (cdfid‘ dataid, "units®, &ttype, &tlen);
scale = (float *) malloc(vrien*nctypelen(vrtype));
string = (char *) malloc(tien*nctypelen(ttype));

ncattget(cdfid, dataid, “scale_factor", (void *)scale);
printf(» scale:ﬁf, xf, kf\n“, scale(0], scale[1),scale[é]);

/*

get the units text description (from attribute units) */
ncattget(cdfid, dataid, "units®, (void *)string);

set the pixel, channel and record counters */
count [0} = 1;
count{1l = 1;
count(2] = 1;

get the hyperslab of data (one number in this case) */
ncvarget(cdfid, dataid, start, count, (void *) value);

printf(" cdfid =Xd\n", cdfid);

printf(" dataid=Xd\n", dataid);

printf(" start =xd, *d, %d \n",start[0],start{1],start(21);
printf(" count =%d, %d, %d \n",count[01,count[1],count(2]);
printf(" value =Xd\n", value(0]);

calling a Fortran subroutine . */
CODE1(valuel0l, scale, start, string);

subroutine codel(value, scale, start, string)

integer*4 start(3)
integer*2 value
real*4 scale(12)

character*72 string

== value= ', value
== scale= ', scale(1),scale(2),scale(3)
== start= ', start(1),start(2),start(3)

print *, 'in codel
print *, !

print *, !

write the resulting radiance, after rescaling to a real number
print *, ' Radiance =', real(value)*scale(start(2))

print *, string(1:29)

return
end

SHELL.C 10-1-92 4:22p

Page 1 of 1

TR Toe § Al

MODIS Level 1 Earth Navigation Software Evaluation

Paul A. Hubanks
02 October 1992

I received a group of subroutines and functions that perform earth navigation of satellite pixel
data from Fred Nagel (NESDIS, University of Wisconsin) several weeks ago. Some very basic
problems have become clear after working with the code. First, the coordinate system conversion
routine was not written using structured coding practices. It uses a complex branching logic with
multiple exit points. Second, there was an assumption of a spherical earth in the earth navigation
routine. Additional code would have to be written to account for the oblateness of the earth and
since sections of the code were not "well-structured" it was decided that a major modification of
this particular set of routines was not the best option.

The USGS software used for the geolocation of AHVRR data has finally been approved for
release. These routines were written in the C language. They have run the code on UNIX,
VAX/VMS and SUN workstations implying code portability. The earth navigation routines were

developed as a joint effort between the USGS EROS Data Center and the University of Colorado.

The software was informally tested before implementation by both facilities, but the test cases and
results are "most probably” no longer available. The earth navigation code uses the Clark1866
ellipsoid earth model. The software manager, Doug Hollaren, thought it would be relatively
simple to change this to the W(GS84 ellipsoid. The software does not include any earth elevation
correction. It does, however, correct for time drift of the on-board clock. This drift was on the
order of 1/2 second. Operationally, geolocation errors were found to be less that 5 km. Most of
this error could be attributed to incorrect ephemeris. The code will be ported to my account on
the LTP/VAX computer either today (Friday) or Monday.

I have also been assigned the task to begin collecting preliminary Science Team algorithms for
examination. I spoke with Yoram Kaufman and he agreed to release his Aerosol Optical Depth
code (product # 2293) after his programmer "cleaned it up". I also have a meeting set up with Si
Chee Tsay (Mike Kings programmer) to acquire selected algorithms currently running on MAS
data.

18

